Simple Machines: Same Work with Less Effort (student version)

Simple machines let us do the same work with less force!

Simple Machine 1: Inclined Plane

When you lift the load straight up from floor to chair:
How much force is needed to lift the cup?: \qquad N

Over what distance (height) did you lift up the cup?: \qquad cm

When you lift drag the load along the ramp:
Force to move cup up the ramp: \qquad N

Over what distance (measured along the ramp) did you drag the cup?: \qquad cm

Using the ramp, the force needed to lift the load was: lower / higher
Using the ramp, the distance over which the force acted was: longer / shorter
A ramp is an example of a simple machine called an inclined plane

Simple Machine 2: Pulley

When you lift with a pulley:
How much force is needed to lift the load? \qquad N
Over what distance does the spring scale move to lift the load to the top? \qquad cm

When you lift directly (without pulley):
How much force is needed to lift the load? \qquad N
Over what distance does the spring scale move to lift the load directly? \qquad cm

Simple Machine 3: Lever

Fulcrum in the middle:
How big a force is needed to lift the load with fulcrum in the middle? \qquad N How does this compare to the force needed without a machine?

Smaller / Larger / about the same
Fulcrum closer to load:
How big a force is needed to lift the load with fulcrum closer to load? \qquad N How does this compare to the force needed without a machine?

Smaller / Larger / about the same

Distance for the force to act is: smaller / larger / about the same
What will happen if the fulcrum is closer to the force, further from the load?
The force needed to lift will be:
smaller / larger / about the same
All simple machines allow you to use a smaller force, over a longer distance to accomplish the same amount of work (eg: lifting a load to a certain height).

