Acids and Bases
 Blowing up balloons with chemical reactions

- Acids (like citric acid) are chemicals that like to drop hydrogen ions $\left(\mathrm{H}^{+}\right)$when dissolved in water.
- Bases (like baking soda) are chemicals that like to grab extra hydrogen ions $\left(\mathrm{H}^{+}\right)$out of solution.
- Baking soda makes carbon dioxide gas $\left(\mathrm{CO}_{2}\right)$ when reacting with acid.
- The pH of a solution measures how many $\mathrm{H}+$ ions are present
- Low pH (below 7) means the solution is acidic (lots of $\mathrm{H}+$ ions).
- High pH (above 7) means the solution is basic (few $\mathrm{H}+$ ions)
- Neutral pH (at 7) means the solution is neither acidic nor basic.

Measuring pH and Making Dilutions

1. Label a bowl as Solution 1. Put 3 dixie cups of water into the bowl. Dip in a pH strip for a couple seconds, then lay it out on a white surface. Compare with the chart.

Pure water: measured pH

\qquad
2. Make Solution 1 by adding 3 spoonfuls of citric acid powder to your bowl with water. Mix until fully dissolved. Measure the pH.

Solution 1: measured pH \qquad
3. You can make a "dilution" by mixing your solution with extra water. Make Solution 2 in a second bowl or large cup by mixing 4 spoonfuls of Solution $1+$ 4 dixie cups of water. Label your solution. Measure the pH.

Solution 2: measured pH \qquad
4. Make a prediction:

Which of the 2 solutions will taste more sour? Circle one:
Solution $1 \quad$ Solution 2
Test your prediction by dipping your finger into each and tasting 1 drop.
Which is more sour? Circle one: Solution $1 \quad$ Solution 2

Acid-Base Reactions

1. Pour 2 dixie cups of Solution 1 into one of your bottles. Pour 2 dixie cups of Solution 2 into the other bottle. Label the bottles!
2. Use the funnel to fill your two balloons with 2 spoonfuls of baking soda each.
3. Place the balloons over the opening of each bottle.
 Each balloon should be draped so the baking soda does not fall out yet.
4. Lift up the balloon to empty out the baking soda into Solution 2 first. Hold the neck of the balloon and the bottle so nothing spills out!
```
What do you see?
```

5. Swirl the bottle a bit to make sure the reaction runs to completion. Use a ruler to measure the width of the inflated balloon.

Width of balloon (Solution 2): \qquad
6. Now dump the balloon full of baking soda into Solution 1. Measure the width of the balloon.

Width of balloon (Solution 1): \qquad
Which solution made more gas? \qquad
Do you see more baking soda left in the bottle afterwards? Where did it all go?

If you have extra time:

7. Make a prediction for what will be the pH of each after the reactions. Circle one.

Predicted pH of Solution 1 after reaction: acidic neutral basic
Predicted pH of Solution 2 after reaction: acidic neutral basic
8. Take off the balloons. Use pH strips to test the liquids left in the bottles.

$$
\begin{aligned}
& \text { pH of Solution } 1 \text { after reaction: } \\
& \text { pH of Solution } 2 \text { after reaction: }
\end{aligned}
$$

Which solution is more basic after the reaction? Why do you think that is?

